Irwin-Hall Distribution
November 23, 2024 •
Comment
$n$ 个在 $[0,1)$ 上均匀分布的随机变量 $\{x_i\}$,考虑它们的和 $s=\sum x_i$,则 $s$ 服从 Irwin-Hall Distribution,其累计分布函数
$$
F_s(x)=\frac 1 {n!}\sum_{k=0}^{\lfloor x\rfloor}(-1)^k\binom nk(x-k)^n.
$$
考虑单个变量的概率密度函数 $f(x)=[0\le x< 1]$,则 $F$ 是 $n$ 个 $f$ 的卷积。